Important update to Remarketing with Google Analytics

If you got this email from Google recently, or seen the blue notification bar at the top of Google Analytics, here's what is changing and how it affects your website. The big problem in modern online marketing is that most users have multiple devices, and the device they interact with the advert on is not the same as the one they convert on: [Google’s] research shows that six in ten internet users start shopping on one device but continue or finish on a different one. Facebook has been helping advertisers track conversion across devices for a few years  - because most Facebook ads are served on their mobile app, when most conversion happens on larger screens. So Google has been forced to play catch-up. Here’s the message from the Google Analytics header: Starting May 15, 2017, all properties using Remarketing with Google Analytics will be enhanced to take advantage of new cross-device functionality. This is an important update to your remarketing settings, which may relate to your privacy policy. The change was announced last September but has only just rolled out. So you can remarket to users on a different device to the one on which they visited your site when: You build a retargeting audience in Google Analytics You have opted in to remarketing tracking in Google Analytics Users are logged into Google on more than one device Users have allowed Google to link their web and app browsing history with their Google account Users have allowed Google account to personalise ads they see across the web This may seem like a hard-to-reach audience, but Google has two secret weapons: Gmail (used by over 1 billion people and 75% of those on mobile) and Chrome (now the default web browser for desktop, and growing in mobile). So there are many cases where Google knows which devices are linked to a user. What is not changing is how Google counts users in Google Analytics. Unless you are tracking registered users, a ‘user’ in Google Analytics will still refer to one device (tablet, mobile or laptop / desktop computer).   Could Google use their account information to make Google Analytics cross-device user tracking better? Yes, they could; but Google has always been careful to keep their own data about users (the actions users take on Google.com) separate from the data individual websites capture in Google Analytics (the actions users take on mywebsite.com). The former is owned by Google, and protected by a privacy agreement that exists between Google and the user, and the latter is owned by the website adding the tracking code but stored and processed by Google Analytics. Blurring those two would create a legal minefield for Google, which is why they stress the word ‘temporary’ in their explanation of cross-device audiences: In order to support this feature, Google Analytics will collect these users’ Google-authenticated identifiers, which are Google’s personal data, and temporarily join them to your Google Analytics data in order to populate your audiences.   How can I make use of the new cross-device retargeting? The first step is to create a remarketing audience from a segment of your website visitors that are already engaged. This could be users who have viewed a product, users who have viewed the pricing page or users who have viewed more than a certain number of pages. For more help on setting up the right goals to power the remarketing audience, please contact us.

2017-04-10

Shine a light on ‘dark’ Facebook traffic

If Facebook is a major channel for your marketing, whether sponsored posts or normal, then you’re underestimating the visits and sales it brings. The problem is that Facebook doesn’t play nicely with Google Analytics, so some of the traffic from Facebook mobile app comes as a DIRECT visit. That’s right – if a Facebook user clicks on your post on their native mobile app they won’t always appear as a Facebook social referral. This traffic is ‘dark Facebook’ traffic: it is from Facebook, but you just can’t see it. Since around 40% of Facebook activity is on a mobile app, that means the Facebook traffic you see could be up to 40% less than the total. Facebook hasn’t shown much interest in fixing the issue (Twitter fixed it, so it is possible), so you need to fix this in your own Google Analytics account. Here are three approaches: 1. Basic: use campaign tagging The simplest way to fix this, for your own posts or sponsored links on Facebook, is to attach UTM campaign tags to every link. Google provides a simple URL builder to help. The essential tags to add are “utm_source=facebook.com” and “utm_medium=referral”. This will override the ‘direct’ channel and put all clicks on that links into the Facebook referral bucket. Beyond that, you can add useful tags like “utm_campaign=events_page” so you can see how many click through from your Facebook events specifically. 2. Moderate: use a custom segment to see traffic What if much of your traffic is from enthusiastic brand advocates, sharing your pages or articles with their friends? You can’t expect them to all use an URL builder. But you can make a simple assumption that most users on a mobile device are not going to type in a long URL into their browser address bar. So if the user comes from a mobile device, and isn’t visiting your homepage (or a short URL you deliberately post), then they are probably coming from a mobile app. If your website is consumer facing, then the high probability is that that mobile app is Facebook. So we can create a custom segment in GA for traffic which (a) comes from a mobile device (b) does not have a referrer or campaign (i.e. direct) (c) does not land on the homepage To start you need to create a segment where source contains 'facebook'. Then add the 'Direct mobile, not to homepage' segment: Next, you can create a custom report to show sessions by hour: You should see a strong correlation, which on the two web properties I tested on resulted in doubling the traffic I had attributed to Facebook. 3. Advanced: attribute micro spikes to Facebook Caveat: you’ll need a large volume of traffic – in excess of 100 visits from Facebook a day – to try this at home The final trick has been proved to work at The Guardian newspaper for Facebook traffic to news articles. Most Facebook activity is very transitory – active users click on a trending newsfeed item, but it quickly fades in interest. So what you could do, using the Google Analytics API, is look for the ‘micro spikes’ in referrals that come from Facebook on a minute-by-minute basis, and then look at the direct mobile visits which came at the same time, and add these direct spikes to the total Facebook traffic. I've played around with this and it's difficult to get right, due to the sampling Google applies, but I did manage to spot spikes over around 5 minutes that had a strong correlation with the underlying direct mobile traffic. Could these approaches work for your site?  I'm interested to hear. (Chart: Dark Social Dominates Online Sharing | Statista)   Get Social! Follow us on LinkedIn, Twitter, and Facebook and keep up-to-date with our Google Analytics insights.

2017-02-09

6 reasons Facebook ads don’t match the data you see in Google Analytics

If you run Facebook Ads and want to see how they perform in Google Analytics, you may have noticed some big discrepancies between the data available in Facebook Ad Manager and GA. Both systems use different ways to track clicks and visitors, so let’s unpick where the differences are. There are two kinds of metrics you’ll be interested in: ‘website clicks’ = the number of Facebook users who clicked on an advert on your own site, and (if you do ecommerce) the transaction value which was attributed to that advert. Website Clicks vs Sessions from Facebook 1. GA isn’t picking up Facebook as the referrer If users click on a link in Facebook’s mobile app and your website opens in an in-app browser, the browser may not log that ‘facebook.com’ was the referrer. You can override this (and any other link) by setting the medium, source, campaign and content attributes in the link directly. e.g. www.mysite.com?utm_medium=social&utm_source=facebook.com&utm_campaign=ad Pro Tip: you can use GA’s URL builder to set the UTM tags on every Facebook campaign link for GA. In GA, under the Admin tag and then ‘Property settings’ you should also tick the box saying ‘Allow manual tagging (UTM values) to override auto-tagging (GCLID values)’ to make this work more reliably. 2. The user leaves the page before the GA tag fires There’s a time delay between a user clicking on the advert in Facebook and being directed to your site. On a mobile, this delay may be several seconds long, and during the delay, the user will think about going back to safety (Facebook’s app) or just closing the app entirely. This will happen more often if the visitor is not familiar with your brand, and also when the page contents are slow to load. By Facebook’s estimation the GA tracking won’t fire anywhere between 10% and 80% of clicks on a mobile, but fewer than 5% of clicks on a desktop. It depends on what stage in the page load the GA pixel is requested. If you use a tag manager, you can control this firing order – so try firing the tag as a top priority and when the tag container is first loaded. Pro Tip: you can also use Google's mobile site speed suggestions to improve mobile load speed, and reduce this post-click drop-off. 3. A Javascript bug is preventing GA receiving data from in-app browsers It’s possible your page has a specific problem that prevents the GA tag firing only for mobile Safari (or Android equivalent). You’ll need to get your developers to test out the landing pages specifically from Facebook’s app. Luckily Facebook Ad Manager has a good way to preview the adverts on your mobile. Facebook Revenue vs GA Ecommerce revenue 4. Attribution: post-click vs last non-direct click Currently, Facebook has two types of attribution: post-view and post-click. This means any sale the user makes after viewing the advert or clicking on the advert, within the attribution window (typically 28 days after clicking and 1 day after viewing), is attributed to that advert. GA, by contrast, can use a variety of attribution models, the default being last non-direct click. This means that if the user clicks on an advert and on the same device buys something within the attribution window (typically 30 days), it will be attributed to Facebook.  GA doesn't know about views of the advert. If another campaign brings the same user to your site between the Facebook ad engagement and the purchase, this other campaign takes the credit as the ‘last non-direct click’. So to match as closely as possible we recommend setting the attribution window to be '28 days after clicking the ad' and no 'after view' attribution in Facebook (see screenshot above) and then creating a custom attribution model in GA, with the lookback window at 28 days, and the attribution 'linear' The differences typically come when: a user engages with more than one Facebook campaign (e.g. a brand campaign and a re-targeting one) where the revenue will only be counted against the last campaign (with a priority for ads clicked vs viewed) a user clicks on a Facebook ad, but then clicks on another advert (maybe Adwords) before buying. Facebook doesn’t know about this 2nd advert, so will attribute all the revenue to the Facebook ad. GA knows better, and will attribute all (or part) of it to Adwords. 5. Facebook cross-device tracking The main advantage Facebook has over GA is that users log in to its platform across all of their devices, so it can stitch together the view of a mobile advert on day 1 with a purchase made from the user’s desktop computer on day 2. Here’s a fuller explanation. By contrast, unless that user logs into your website on both devices, and you have cross-device tracking setup, GA won’t attribute the sale to Facebook. 6. Date of click vs date of purchase In Facebook, revenue is attributed to the date the user saw the advert; in GA it is to the date of purchase. So if a user clicks on the advert on 1st September, and then buys on the 3rd September, this will appear on the 1st on Facebook – and on the 3rd in GA. 7. The sampling problem Finally, did you check if the GA report is sampled? In the top right of the screen, in the grey bar, you'll see that the report is based on a sample.  If that sample is less than 100% it means the numbers you see are estimates.  The smaller the sample size used, the larger the possibility of error.  So in this example, a 45% sample of 270,000 sessions could skew our results plus or minus 0.2% in the best case. As a rule of thumb, Google applies sampling when looking over more than 500,000 sessions (even if you select the 'greater precision' option from the drop-down menu). You can check your own sample using this confidence interval calculator. Conclusion Altogether, there’s a formidable list of reasons why the data will never be an exact match, but I hope it gives you a way to optimise the tracking. Please let us know if you’ve seen other tracking issues aside from these.   Get Social! Follow us on LinkedIn, Twitter, and Facebook and keep up-to-date with our Google Analytics insights.

2017-02-08

The referral exclusion list: what it is and how to update it?

The referral exclusion list is only available for properties using Universal Analytics ... so please make the jump and take advantage of the benefits! Let's find out how excluding referral traffic affects your data and how you can correct some of the wrong attributions of sales. By default, a referral automatically triggers a new session. When you exclude a referral source, traffic that arrives to your site from the excluded domain doesn’t trigger a new session. Because each referral triggers a new session, excluding referrals (or not excluding referrals) affects how sessions are calculated in your account. The same interaction can be counted as either one or two sessions, based on how you treat referrals. For example, a user on my-site.com goes to your-site.com and then returns to my-site.com. If you do not exclude your-site.com as a referring domain, two sessions are counted, one for each arrival at my-site.com. If, however, you exclude referrals from your-site.com, the second arrival to my-site.com does not trigger a new session, and only one session is counted. Common uses for referral exclusions list in Google Analytics: Third-party payment processors Cross-subdomain tracking If you add example.com to the list of referral exclusions, traffic from the domain example.com and the subdomain another.example.com are excluded. Traffic from another-example.com is not excluded. Only traffic from the domain entered in the referral exclusions list and any subdomains are excluded. Traffic from domains that only have substring matches are not excluded. How to add domains in the referral exclusion list: Sign in to your Gooogle Analytics account. Click admin in the menu bar at the top of any page. In the account column, use the drop-down to select the Google Analytics account that contains the property you want to work with. In the property column, use the drop-down to select a property. Click tracking info. Click referral exclusion list. To add a domain, click +add referral exclusion. Enter the domain name. Click create to save. The referral exclusion list used contains matching. For example, if you enter example.com, then traffic from sales.example.com is also excluded (because the domain name contains example.com). Need help with these steps? Get in touch with one of our experts and we'd be happy to assist you!   Get Social! Follow us on LinkedIn, Twitter, and Facebook and keep up-to-date with our Google Analytics insights.

2016-11-29

4 common pitfalls of running conversion rate experiments from Microsoft

At a previous Measurefest conference, one of the speakers, Craig Sullivan, recommended a classic research paper from Microsoft on common pitfalls in running conversion rate experiments. It details five surprising results which took 'multiple-person weeks to properly analyse’ at Microsoft and published for the benefit of all. As the authors point out, this stuff is worth spending a few weeks getting right as ‘multi-million-pound business decisions’ rest on the outcomes. This research ultimately points out the importance of doing A/A Testing. Here follows an executive overview, cutting out some of the technical analysis: 1. Beware of conflicting short-term metrics Bing’s management had two high-level goals: query share and revenue per search. The problem is that it is possible to increase both those and yet create a bad long-term company outcome, by making the search algorithm worse. If you force users to make more searches (increasing Bing’s share of queries), because they can’t find an answer, they will click on more adverts as well. “If the goal of a search engine is to allow users to find their answer or complete their task quickly, then reducing the distinct queries per task is a clear goal, which conflicts with the business objective of increasing share.” The authors suggest a better metric in most cases is lifetime customer value, and the executives should try to understand where shorter-term metrics might conflict with that long-term goal 2. Beware of technical reasons for experiment results The Hotmail link on the MSN home page was changed to open Hotmail in a separate tab/window. The naïve experiment results showed that users clicked more on the Hotmail link when it opened in a new window, but the majority of the observed effect was artificial. Many browsers kill the previous page’s tracking Javascript when a new page loads – with Safari blocking the tracking script in 50% of pages opening in the same window. The “success” of getting users to click more was not real, but rather an instrumentation difference. So it wasn’t that more people were clicking on the link – but actually that just more of the links were being tracked in the ‘open in new tab’ experiment. 3. Beware of peeking at results too early When we release a new feature as an experiment, it is really tempting to peek at the results after a couple of days and see if the test confirms our expectation of success (confirmation bias). With the initial small sample, there will be a big percentage change. Humans then have an innate tendency to see trends where there aren’t any. So the authors give the example of this chart: Most experimenters would see the results, and even though they are negative, extrapolate the graph along the green line to a positive result and four days. Wrong. What actually happens is regression to the mean. This chart is actually from an A/A test (i.e. the two versions being tested are exactly the same). The random differences are biggest at the start, and then tail off - so the long term result will be 0% difference as the sample size increases. The simple advice is to wait until there are enough test results to draw a statistically significant conclusion. That generally means more than a week and hundreds of individual tests. 4. Beware of the carryover effect from previous experiments Many A/B test systems use a bucketing system to assign users into one experiment or another. At the end of one test the same buckets of users may be reused for the second test. The problem is that if users return to your product regularly (multiple times daily in the case of Bing), then a highly positive or negative experience in one of the tests will affect all of that bucket for many weeks. In one Bing experiment, which accidentally introduced a nasty bug, users who saw the buggy version were still making fewer searches 6 months after the experiment ended. Ideally, your test system would re-randomise users for the start of every new test, so those carryover effects are spread as wide as possible. Summary For me the biggest theme coming out of their research is the importance of A/A tests – seeing what kind of variation and results you get if you don’t change anything. Which makes you more aware of the random fluctuations inherent in statistical tests. In conclusion, you need to think about the possible sources of bias before acting on your tests. Even the most experienced analysts make mistakes! Have any comments? Let us know what you think, below!    

2016-11-27

5 tips to avoid a metrics meltdown when upgrading to Universal Analytics

Universal Analytics promises some juicy benefits over the previous standard analytics. But having upgraded 6 different high traffic sites there are some pitfalls to be aware of. Firstly, why would you want to upgrade your tracking script? More reliable tracking of page visitors - i.e. fewer visits untracked More customisation to exclude certain referrers or search terms Better tools for tracking across multiple domains and tracking users across different devices Track usage across your apps for the same web property Ability to send up to 20 custom dimensions instead of the previous limit of only 5 custom variables If you want to avoid any interruption of service when you upgrade, why not book a quick consultation with us to check if Universal Analytics will work in your case. But before you start you should take note of the following. 1. Different tracking = overall visits change If your boss is used to seeing dependable weekly / monthly numbers, they may query why the number of visits has changed. Universal Analytics is likely to track c. 2% more visits than previously (partly due to different referral tracking - see below), but it could be higher depending on your mix of traffic. PRO TIP: Set up a new web property (a different tracking code) for Universal Analytics and run the old and new trackers alongside each other for a month. Then you can see how the reports differ before sharing with managers. Once this testing period is over you'll need to upgrade the original tracking code to Universal Analytics to you keep all your historic data. 2. Different tracking of referrals Previously, if Bob clicked on a link in Twitter to your site, reads, goes back to Twitter, and within 30 minutes clicks on a different link to your site - that would be counted as one visit and the 2nd referral source would be ignored. In Universal Analytics, when Bob clicks on the 2nd link he is tracked as a second visit, and 2nd referral source is stored. This may be more accurate for marketing tracking, but if Bob then buys a product from you, going via a secure payment gateway hosted on another domain (e.g. paypal.com) then the return from the payment gateway will be counted as a new visit. All your payment goals or ecommerce tracking will be attributed to a referral from 'paypal.com'. This will ruin your attribution of a sale to the correct marketing channel or campaign! PRO TIP: You need to add all of the payment gateways (or other third party sites a user may visit during the payment process) to the 'Referral Exclusion List'. You can find this under the Admin > Property > Tracking codes menu: 3. Tracking across domains If you use the same tracking code across different domains (e.g. mysite.co.uk and mysite.com or mysite.de) then you will need to change the standard tracking script slightly. By default the tracking script you copy from Google Analytics contains a line like: ga('create', 'UA-XXXXXXX-1', 'mysite.com');. This will only track pages that strictly end with 'mysite.com'. PRO TIP: It's much safer to change the tracker to set that cookie domain automatically. The equivalent for the site above would be ga('create', 'UA-XXXXXXX-1', 'auto');. The 3rd argument of the function is replaced with 'auto'. 4. Incompatibility with custom variables Only relevant if you send custom data already Custom variables are only supported historically in Universal analytics. That means you will need to change any scripts that send custom data to the new custom dimension format to keep data flowing. Read the developer documentation for more. PRO TIP: You'll need to set the custom dimension names in the admin panel before the custom data can be sent from the pages. You can also only check that the custom dimensions are being sent correctly by creating a new custom report for each dimension. 5. User tracking limitations We wouldn't recommend implementing the new user ID feature just now, as it has some major limitations compared with storing the GA client ID. You need to create a separate view to see the logged-in-user data, which makes reporting pageviews a whole lot more complex. Visits a user made to your site BEFORE signing up are not tracked with that user - which means you can't track the marketing sources by user PRO TIP: See our user tracking alternative. Got more tips on to setting up Universal Analytics? Please share them with us in the comments, or get in touch if you want more advice on how to upgrade!   Get Social! Follow us on LinkedIn, Twitter, and Facebook and keep up-to-date with our Google Analytics insights.

2016-11-26

Widget Tracking with Google Analytics

I was asked recently about the best way to track a widget, loaded in an iframe, on a third-party site with Google Analytics. The difficulty is that many browsers now block 3rd party cookies (those set by a different domain to the one in the browser address bar) – and this applies to a Google Analytics cookie for widgets as much as to adverts. The best solution seems to be to use local storage on the browser (also called HTML5 Storage) to store a persistent identifier for Analytics and bypass the need to set a cookie – but then you have to manually create a clientID to send to Google Analytics. See the approach used by ShootItLive. However, as their comment on line 41 says, this is not a complete solution - because there are lots of browsers beyond Safari which block third party cookies. I would take the opposite approach and check if the browser supports local storage, and only revert to trying to set a cookie if it does not. Local storage is now possible on 90% of browsers in use and the browsers with worst 3rd party cookie support (Firefox and Safari) luckily have the longest support for local storage. As a final note, I would set up the tracking on a different Google Analytics property to your main site, so that pageviews of widgets are not confused with pageviews of your main site. To do list: Build a script to create a valid clientID for each new visitor Call ga('create) function, setting 'storage' : 'none', and getting the 'clientID' from local storage (or created from new) Send a pageview (or event) for every time the widget is loaded. Since the widget page is likely to be the same every time it is embedded, you might want to store the document referrer (the parent page URL) instead Need help with the details? Get in touch with our team of experts and we'd be happy to help!   Get Social! Follow us on LinkedIn, Twitter, and Facebook and keep up-to-date with our Google Analytics insights.

2016-11-25

How to link Adwords and Google Analytics

If you are running an AdWords campaign you must have a Google Analytics account. We will show you how to link these two accounts so you can unleash the full reporting potential of both platforms. 1. Why should you link Analytics and AdWords? When you link Google Analytics and AdWords, you can: See ad and site performance data in the AdWords reports in Google Analytics. Import Google Analytics goals and ecommerce transactions directly into your AdWords account. Import valuable Analytics metrics—such as bounce rate, avg. session duration, and pages/session—into your AdWords account. Take advantage of enhanced remarketing capabilities. Get richer data in the Google Analytics multi-channel funnels reports. Use your Google Analytics data to enhance your AdWords experience. 2. How to link Google Analytics and AdWords The linking wizard makes it easy to link your AdWords account(s) to multiple views of your Google Analytics property. If you have multiple Google Analytics properties and want to link each of them to your AdWords account(s), just complete the linking wizard for each property. Sign into your Google Analytics account at www.google.com/analytics. Note: You can also quickly open Google Analytics from within your AdWords account. Click the tools tab, select analytics, and then follow the rest of these instructions. Click the admin tab at the top of the page. In the account column, select the analytics account that contains the property you want to link to one or more of your AdWords accounts. In the property column, select the analytics property you want to link, and click AdWords Linking. Use one of the following options to select the AdWords accounts you want to link with your analytics property. Select the checkbox next to any AdWords accounts you want to link with your analytics property. If you have an AdWords manager (MCC) account, select the checkbox next to the manager account to link it (and all of its child accounts) with your analytics property. If you want to link only a few managed accounts, expand the manager account by clicking the arrow next to it. Then, select the checkbox next to each of the managed AdWords accounts that you want to link. Or, click all linkable to select all of managed AdWords accounts under that MCC. You can then deselect individual accounts, and the other accounts will stay selected. Click the continue button. In the link configuration section, enter a link group title to identify your group of linked AdWords accounts. Note: Most users will only need one link group. We recommend creating multiple link groups only if you have multiple AdWords accounts and want data to flow in different ways between these accounts and your analytics property. For example, you should create multiple link groups if you need to either link different AdWords accounts to different views of the same Google Analytics property or enable auto-tagging for only some of your AdWords accounts. Select the Google Analytics views in which you want the AdWords data to be available. If you've already enabled auto-tagging in your AdWords account, skip to the next step. The account linking process will enable auto-tagging for all of your linked AdWords accounts. Click advanced settings only if you need to manually tag your AdWords links. Click the link accounts button. Congratulations! Your accounts are now linked. If you opted to keep auto-tagging turned on (recommended), Google Analytics will automatically start associating your AdWords data with customer clicks. For a deeper view and debugging you should also read the Google Analytics guide. Have any questions on setting this up? Get in touch and we'd be happy to help!   Get Social! Follow us on LinkedIn, Twitter, and Facebook and keep up-to-date with our Google Analytics insights.

2016-11-24

Try the top-rated Google Analytics app for Shopify stores

Get a 30-day free trial of Littledata for Google Analytics or Segment